Standardize metadata on-the-fly#

This use cases runs on a LaminDB instance with populated CellType and Pathway registries. Make sure you run [CellTypist] and GO Ontology notebooks before executing this use case.

Here, we demonstrate how to standardize the metadata on-the-fly during cell type annotation and pathway enrichment analysis using these two registries.

For more information, see:

!lamin load use-cases-registries
import lamindb as ln
import lnschema_bionty as lb
from lamin_usecases import datasets as ds
import scanpy as sc
import matplotlib.pyplot as plt
import celltypist
import gseapy as gp
sc.settings.set_figure_params(dpi=80, facecolor="white")
ln.track()

An interferon-beta treated dataset#

A small peripheral blood mononuclear cell dataset that is split into control and stimulated groups. The stimulated group was treated with interferon beta.

Let’s load the dataset and perform some preprocessing:

adata = ds.anndata_seurat_ifnb(preprocess=False, populate_registries=True)
adata
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata, n_top_genes=2000)
sc.pp.pca(adata, n_comps=20)
sc.pp.neighbors(adata, n_pcs=10)
sc.tl.umap(adata)

Analysis: cell type annotation using CellTypist#

model = celltypist.models.Model.load(model="Immune_All_Low.pkl")
predictions = celltypist.annotate(
    adata, model="Immune_All_Low.pkl", majority_voting=True
)
adata.obs["cell_type_celltypist"] = predictions.predicted_labels.majority_voting
lb.CellType.inspect(adata.obs["cell_type_celltypist"]);
adata.obs["cell_type_celltypist"] = lb.CellType.standardize(
    adata.obs["cell_type_celltypist"]
)
sc.pl.umap(
    adata,
    color=["cell_type_celltypist", "stim"],
    frameon=False,
    legend_fontsize=10,
    wspace=0.4,
)

Analysis: Pathway enrichment analysis using Enrichr#

This analysis is based on the GSEApy scRNA-seq Example.

First, we compute differentially expressed genes using a Wilcoxon test between stimulated and control cells.

# compute differentially expressed genes
sc.tl.rank_genes_groups(
    adata,
    groupby="stim",
    use_raw=False,
    method="wilcoxon",
    groups=["STIM"],
    reference="CTRL",
)

rank_genes_groups_df = sc.get.rank_genes_groups_df(adata, "STIM")
rank_genes_groups_df.head()

Next, we filter out up/down-regulated differentially expressed gene sets:

degs_up = rank_genes_groups_df[
    (rank_genes_groups_df["logfoldchanges"] > 0)
    & (rank_genes_groups_df["pvals_adj"] < 0.05)
]
degs_dw = rank_genes_groups_df[
    (rank_genes_groups_df["logfoldchanges"] < 0)
    & (rank_genes_groups_df["pvals_adj"] < 0.05)
]

degs_up.shape, degs_dw.shape

Run pathway enrichment analysis on DEGs and plot top 10 pathways:

enr_up = gp.enrichr(degs_up.names, gene_sets="GO_Biological_Process_2023").res2d
gp.dotplot(enr_up, figsize=(2, 3), title="Up", cmap=plt.cm.autumn_r);
enr_dw = gp.enrichr(degs_dw.names, gene_sets="GO_Biological_Process_2023").res2d
gp.dotplot(enr_dw, figsize=(2, 3), title="Down", cmap=plt.cm.winter_r);

Register analyzed dataset and annotate with metadata#

Register new features and labels (check out more details here):

new_features = ln.Feature.from_df(adata.obs)
ln.save(new_features)
new_labels = [ln.ULabel(name=i) for i in adata.obs["stim"].unique()]
ln.save(new_labels)
features = ln.Feature.lookup()

Register dataset using a Artifact object:

artifact = ln.Artifact.from_anndata(
    adata,
    description="seurat_ifnb_activated_Bcells",
    field=lb.Gene.symbol,
    organism=(  # optionally, globally set organism via lb.settings.organism = "human"
        "human"
    ),
)
artifact.save()

Querying metadata#

artifact.describe()

Querying cell types#

Querying for cell types contains “B cell” in the name:

lb.CellType.filter(name__contains="B cell").df().head()

Querying for all artifacts annotated with a cell type:

celltypes = lb.CellType.lookup()
celltypes.tem_trm_cytotoxic_t_cells
ln.Artifact.filter(cell_types=celltypes.tem_trm_cytotoxic_t_cells).df()

Querying pathways#

Querying for pathways contains “interferon-beta” in the name:

lb.Pathway.filter(name__contains="interferon-beta").df()

Query pathways from a gene:

lb.Pathway.filter(genes__symbol="KIR2DL1").df()

Query artifacts from a pathway:

ln.Artifact.filter(feature_sets__pathways__name__icontains="interferon-beta").first()

Query featuresets from a pathway to learn from which geneset this pathway was computed:

pathway = lb.Pathway.filter(ontology_id="GO:0035456").one()
pathway
degs = ln.FeatureSet.filter(pathways__ontology_id=pathway.ontology_id).one()

Now we can get the list of genes that are differentially expressed and belong to this pathway:

contributing_genes = pathway.genes.all() & degs.genes.all()
contributing_genes.list("symbol")
# clean up test instance
!lamin delete --force use-cases-registries
!rm -r ./use-cases-registries